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Abstract. With the method of factorisation, a new potential with free parameter is generated. 
This potential possesses exactly the same energy spectrum as the isotonic oscillator (har- 
monic oscillator with centripetal barrier). The wavefunctions and shift operators of the 
new system are also presented. 

1. Introduction 

I t  is well known that the class of analytically soluble systems in quantum mechanics 
is limited. Besides its practical value, a soluble model is often used as a test field for 
various purposes. Therefore finding more potentials, the energy spectra of which can 
be fully determined, is always of great interest. Recently, Abraham and Moses [l] 
developed an algorithm to construct a new soluble system in terms of the inverse 
scattering method. With the help of the Gelfand-Levitan equation one can generate 
a new soluble potential from a known one by adding or subtracting a finite number 
of eigenvalues and/or by changing the normalisations of a finite number of eigenfunc- 
tions. This approach is quite general. Then Mielnik [ 2 ]  found that the traditional 
algebraic factorisation method of solving quantum mechanical problems [ 31 could also 
be used to construct a new potential with an energy spectrum coinciding with that of 
the harmonic oscillator. The factorisation method in this technique is not as general 
as the inverse scattering approach. 

It is worthwhile to explore whether the factorisation method can be used for other 
systems. This paper will deal with a modified oscillator-an isotonic oscillator, i.e. a 
harmonic oscillator with a centripetal barrier. This system has been previously solved 
[4]. For our purposes, we give in § 2 an independent description to show how to solve 
this problem using the factorisation method. A new formula for the shift operators is 
found so that one can obtain the ground-state wavefunction by solving a first-order 
differential equation. In § 3 we present a new factorisation which allows us to construct 
a new potential with a free parameter. This new potential possesses the same energy 
spectrum as the isotonic oscillator. The wavefunctions and the shift operators of the 
new system are given in § 4. Finally we conclude this paper in § 5 with a short remark. 

2. The isotonic oscillator 

The isotonic oscillator is a system described by the following standardised potential: 

V ( x )  =;x2++gx-2 (1)  
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and the Hamiltonian operator is 

H = - f  d2/dX2+fx2+igx-2. 

To avoid ‘fall to the centre’ [ 5 ] ,  the constant g should be greater than - f .  For 
convenience (and recalling the radial Schrodinger equation for the spherically sym- 
metric potential) we suppose 

g = 1(1+ 1 )  (3) 

where 1 can be any real number, but we will always take it to be non-negative. 
The Hamiltonian operator (2) can be factorised as follows: 

1 d2 1(1+1)  1 H ( I )  = -- -+fx2+- - 
2 dx2 2 x2 

= bl b: + 1 - 4 
= b:+, bl+,+l++ 

where the operators bl and b;’ are defined as 

1 d  1 1 d  1 b+ ----+x-- b ---+x-- 
I -  d 2 d x  X ’ - d 2  dx X 

They satisfy the algebraic relation 

bl + b?, = f i x  bT1- b: = ~ I / x  
and the commutative relation 

[b, ,  b t ]  = 1 + I/x2 

[ b,, b-I] = -1/x2 = [ b’_l, b:] 

[ b-,, b:] = 1 = [ bl, bTl].  

(4) 

(7)  

Obviously the operators b, and b: cannot be interpreted as annihilation and creation 
operators, but a short calculation reveals the following relations: 

H (  1 )  bl= bl ( H (  1 - 1) - 1) 

H ( 1 -  1)b;  = b : ( H ( l ) +  1) 
(8) 

which implies that bl and b: can be viewed as 1-shift operators, or shift operators 
among two systems, H ( 1 )  and H(1-1). Using these operators one can obtain the 
solution of H ( 1 )  from that of H ( 1 -  l), and vice versa. 

For example, suppose $, ( I  - 1) is an eigenfunction of H (  1 - 1 )  with eigenvalue E, 

H ( 1 -  1 ) $ , ( 1 -  1) = E,$,  ( 1  - 1) ( 9 )  
then, according to equation (8), we have 

H( I )  b,4, ( I  - 1) = 61 ( H (  1 - 1 )  - l)+, ( I  - 1) 

=(J5,-1)bl$”(1-1) 
which means that b,$,(I- 1 )  is an eigenfunction of H ( I )  with eigenvalue E, - 1. bl is 
the operator lowering the energy level of H ( 1 -  1 )  to H ( 1 ) .  

If we change bl, b: to b-I and bT,,  we have another set of equations: 
H ( I -  1)b-j = bel( H ( I )  - 1) 

H ( l ) b T , = b T l ( H ( l - l ) + l ) .  
( 1 1 )  
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b- , ,  b', have a similar function as b, and b; ,  but the direction is different. Now the 
b-,  is lowering energy level of the H ( I )  to produce that of H ( I -  1 ) .  

Combining the two steps above, we obtain the correct shift operators for a single 
system, say, H ( I ) :  

A ;  = bf+,  bT( /+ , j  = b', b: A/=b- , ,+ l jb /+l  = b / b - /  ( 1 2 )  

[ H( I ) ,  A ; ]  = 2A: (13) 

These relations show that the energy spectrum of H( 1 )  is equally spaced. The spacing 
AE is two. Now we only need to know the ground state which should be annihilated 

AI$O(U = 0 ( 1 4 )  

[ H ( I ) ,  A , ]  = -2Al. 

by A / :  

or, to obtain a wavefunction satisfying the correct boundary condition, 

This is a first-order differential equation which can be solved easily. We have the right 
ground-state wavefunction 

(16) 

where N is the normalisation number. The corresponding energy of the ground state 
can be calculated as follows: 

= ~ x ' + '  e-\-'/* 

H(l)$OO) = (b:+, b/+l+ I + t ) + O ( O  

= ( I + ; ) + o ( l )  = ~ O ( ~ ) $ O ( ~ ) .  (17) 
Thus we know the lowest energy is 

E o ( I ) = l + ; .  (18) 

E,( I )  = 2 n  + I + ;  

The general energy spectrum of the isotonic oscillator H ( 1 )  is 

n = 0 ,  1, 2 , .  . . (19) 
and the corresponding wavefunctions can be constructed by using the raising operator 
A;.  

If we carry out the calculation, the raising operator turns out to be 

A : = U + U + - I ( I + ~ ) / X '  (20) 
where a+ = ( 1 / J 2 ) ( - d / d x +  x )  is the raising operator of the oscillator. This is just the 
form Camiz et al [ 6 ]  used in their paper. Here we have factorised it so it is easier to 
obtain the ground state. 

3. New factorisation 

The isotonic oscillator H ( I )  can be factorised in another way which will allow us to 
reach a new system. Let 

1 d2  1(1+1) 
H (  I )  = - - T+ x* + - = d/d? + I -z' 

2 d x  X- 
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and d, ,  d: have the following form 

1 1 d  I 
J 2  J 2  dx X 

d,  = bl+- 4(x,  I )  = - - + x - - + 4 

1 1 d  I 
J 2  J2 dx X 

d;=b:+--(x, I ) = -  --+x--++ 

where 4(x ,  I )  is a real function. 
Putting ( 2 2 )  back into ( 2 1 ) ,  we obtain an equation for 4 :  

d 4 / d x  + 2/3( x ) 4  + 4 2  = 0 
( 2 3 )  

P ( x ) = x - l / x .  

This null Ricatti equation can be solved generally. The solution is 

To avoid a singularity, we assume that all y satisfy the constraint 

Finally, we have the operator d, 

1 d  1 
J 2  dx X 

dl = - -+ x --+ 4(  X, I )  

which provides a new factorisation. Obviously, when parameters y + 03, all vanish 
and d,  returns to b,. Since the commutator of dl and d: no longer has the form of 
1/x2, we now have the opportunity of generating a new potential with the same spectrum 
as the isotonic oscillator. 

4. New potential 

We construct a new Hamiltonian operator [ 2 ,  71 

f i ( l ) = d ~ + , d l + , + I + ~  

= H (  I )  - (d/dx)d(x,  i+ 1 )  = -d2/dx2+ Q(x, I )  

with a new potential 

I ( I + 1 )  1 d 
2 x2 dx  Q(x, I ) =  V ( X ,  i)-(d/dx)c$(x, l+1)=ix2+---- 4 (x ,  I +  1). 

We now prove that the new Hamiltonian fi( I )  has the same spectrum as H (  I ) .  Recalling 
(21), we see that 

fi(I)dT+i = (dT+i 4 + i  + l+$)dT+i 

= dT+,( H (  I +  1 )  + 1) (29) 
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which means that we can obtain the eigenstates from that of H ( I +  1 )  by using the 
raising operator d:+,, and the corresponding energy levels are raised by a unit. Let 
Gn ( I  + 1 )  be the eigenfunction of H (  I + 1 )  

H (  I + l ) G ,  ( I  + 1 )  = E, ( I  + 1 ) $ , ( I  + 1 )  
(30) 

E , ( I + I )  = 2 n + 1 + 1 + f  n = 0, 1,2,  . . . 

is the eigenfunction of fi(1) 

f i ( 1 ) V i + l U )  = & + l ( ~ ) G f l + 1 ( I )  (32) 

E,+1 ( I )  = 2n + 1 + 1 + f  + 1 = 2( n + 1) + I + f 
with the eigenvalue 

n = 0 , 1 , 2 ,  . . .  (33) 

which is the same as the energy level of H (  I )  except for the ground state. The ground 
state of f i ( I )  can be easily obtained if we impose a condition 

- 1 d  I +  1 - 
d,+l Go(  I )  = - -+ x - - + 4( x, I + 1 )  Go( I )  = 0 

J 2  dx X 
(34) 

which results in 

where again N denotes the normalisation constant. Now we have 

fi(I)JO(U = (d;+ld,+l + I + f ) G o ( 1 )  = ( I + f ) G o ( l )  (36) 

so the energy of the ground state is 

E , ( I ) = I + ;  

which is the right value for H ( 1 ) .  Thus the new system is completely solved. 
Since Gfl ( I  + 1) can be obtained from the eigenfunction of H( I ) ,  

h ( I + l )  = Nb',,+l,G,(I) (37)  

we can generate the eigenfunction of fi( I )  directly through the eigenstate of H (  I ) :  

Gfl+1(O = Ndt+, b " , , + l , h ( I ) .  (38)  

This shape of the raising operator is not difficult to understand. The operator sand- 
wiched in between, b ~ , r + l , b ~ + l ,  is the raising operator of H ( l +  l ) ,  and then d;+l and 
d,+, transfer it into the new system. 
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5. Conclusion 

From the above we see that the factorisation method can be successfully applied to 
obtain a class of potentials which is exactly soluble and has the same point spectrum 
as the isotonic oscillator. Of course, another approach-the inverse scattering 
method-can be used here as well, and the resulting potential might be different. The 
Abraham-Moses algorithm implies that the set of potentials which support a given 
spectrum is uncountable, as in the oscillator case [8]. So different varieties of potential 
may supply more possibilities in some physical problems (as in the theory of 
quarkonium). I t  would be interesting to know whether there are some physical 
quantities apart from energy which can be used to characterise different members in 
the same class. In other words, the role of the parameter in the potential is a puzzle 
yet to be resolved. 
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